A Criterion for the Selection of Principal Components in the Robust Principal Component Regression
نویسندگان
چکیده
منابع مشابه
Robust Principal Component Regression
In this note we introduce a method for robust principal component regression. Robust principal components are computed from the predictor variables, and they are used afterwards for estimating a response variable by performing robust linear multiple regression. The performance of the method is evaluated at a test data set from geochemistry. Then it is used for the prediction of censored values ...
متن کاملthe test for adverse selection in life insurance market: the case of mellat insurance company
انتخاب نامساعد یکی از مشکلات اساسی در صنعت بیمه است. که ابتدا در سال 1960، توسط روتشیلد واستیگلیتز مورد بحث ومطالعه قرار گرفت ازآن موقع تاکنون بسیاری از پژوهشگران مدل های مختلفی را برای تجزیه و تحلیل تقاضا برای صنعت بیمه عمر که تماما ناشی از عدم قطعیت در این صنعت میباشد انجام داده اند .وهدف از آن پیدا کردن شرایطی است که تحت آن شرایط انتخاب یا کنار گذاشتن یک بیمه گزار به نفع و یا زیان شرکت بیمه ...
15 صفحه اولRobust Principal Component Functional Logistic Regression
In this paper, we discuss the estimation of the parameter function for a functional logistic regression model in the presence of outliers. We consider ways that allow for the parameter estimator to be resistant to outliers, in addition to minimizing multicollinearity and reducing the high dimensionality which is inherent with functional data. To achieve this, the functional covariates and funct...
متن کاملSketching for Principal Component Regression
Principal component regression (PCR) is a useful method for regularizing linear regression. Although conceptually simple, straightforward implementations of PCR have high computational costs and so are inappropriate when learning with large scale data. In this paper, we propose efficient algorithms for computing approximate PCR solutions that are, on one hand, high quality approximations to the...
متن کاملNonparametric Principal Components Regression
In ordinary least squares regression, dimensionality is a sensitive issue. As the number of independent variables approaches the sample size, the least squares algorithm could easily fail, i.e., estimates are not unique or very unstable, (Draper and Smith, 1981). There are several problems usually encountered in modeling high dimensional data, including the difficulty of visualizing the data, s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications for Statistical Applications and Methods
سال: 2011
ISSN: 2287-7843
DOI: 10.5351/ckss.2011.18.6.761